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Introduction
The co-orbital resonance has been extensively studied for more than one hundred years in the framework of the restricted three-body problem (RTBP).

In most of the analytical works, the emphasis has been placed on the tadpole orbits since these describe the motion of the Jovian Trojans.

[Giuppone et al., 2010] studied the stability regions and families of periodic orbits of two planets locked in the co-orbital resonance with a numerical

averaging of the disturbing function. Besides the Lagrangian triangular configurations, these authors found a new family of fixed points that they

called anti-Lagrange orbits and caracterized by the relation m1e1 ' m2e2.

This poster and its associated paper ([Robutel and Pousse, 2013]) show that these Lagrange and Anti-Lagrange families bifurcate along the eccentric-

ities direction with the same origin: the Lagrangian triangular configuration.

The averaged Hamiltonian

We consider two planets of masses m1 and m2 respectively in a co-planar motion, a central body (Sun, or star) of dominant mass m0 with respect to the
planetary masses. Following [Laskar and Robutel, 1995], the Hamiltonian of the three-body problem reads

H(r̃j, rj) = ∑
j∈ {1,2}

(
r̃2

j

2β j
−

µjβ j

||rj||

)
︸ ︷︷ ︸

HK(ε)

+
r̃1 · r̃2

m0
− G m1m2

||r1− r2||︸ ︷︷ ︸
Hp(ε2)

, where (1)

• rj is the heliocentric position of the planet j and r̃j, its conjugated variable, is the barycentric linear momentum of this body,

• β j = m0mj(m0 + mj)−1 and µj = G(m0 + mj), G being the gravitational constant,

• HK corresponds to the unperturbed Keplerian motion of the two planets (motion of a mass β j around a fixed center of mass m0 + mj),

• Hp models the gravitational perturbations,

• ε = Max
(

m1
m0

, m2
m0

)
is a small parameter.

⇒HK is of order ε and Hp is of order ε2: that justifies a perturbative approach.

As we only consider the planetary motions in a plane and in the vicinity of the circular problem, the Hamiltonian can be expanded in power series of the
eccentricity variables and their conjugates in the form

∑
k1,k2

 ∑
(p,q)∈N8
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 ei(k1λ1+k2λ2) with Xj, equivalent to ej exp(ivj) for ej ∼ 0, (2)

the non dimensional quatity associated to the Poincaré variables xj.

Remember that (λj, Λj, xj,−ixj), the Poincaré rectangular variables in complex form are a canonical coordinate system related to the elliptical elements
(aj, ej, λj, vj).

⇒The angular momentum of the system is an integral of the motion =“D’Alembert rule” which implies ∑j(k j + pj − p̄j) = 0.

In order to deal with the co-orbital resonance, we choose a more appropriate canonical coordinate system with

θ1 = λ1− λ2, 2J1 = Λ1−Λ2,
θ2 = λ1 + λ2, 2J2 = Λ1 + Λ2.

(3)

You can notice that inside the 1:1 mean motion resonance, θ1 varies slowly with respect to θ2 . Consequently, the planetary Hamiltonian (1) will be
averaged over the angle θ2.

Then, at first order in the planetary masses, the Hamiltonian becomes H(θj, Jj, xj,−ixj) = H0(Jj) + H1(θ1, Jj, xj,−ixj) +O(ε3) with

H0(J1, J2) = −
β3

1µ2
1

2(J1 + J2)2 −
β3

2µ2
2

2(J1− J2)2 = HK ◦ φ(θj, Jj, xj,−ixj) and H1(θ1, Jj, xj,−ixj) =
1

2π

∫ 2π

0
Hp ◦ φ(θj, Jj, xj,−ixj)dθ2 , (4)

where the map φ satisfies the relation (r̃j, rj) = φ(θj, Jj, xj,−ixj).

⇒ The averaging implies that H is independent of θ2.

This fact has two main consequences :
• J2 is a first integral, • D’Alembert rule imposes that H is even in the variables xj and their conjugates.

This last property implies that the set {x1 = x2 = 0} is an invariant manifold with respect to the flow of the averaged Hamiltonian (4).

⇒ The part of the averaged Hamiltonian (4) which doesn’t depend on eccentricities (H0(θ1, Jj) = H(θ1, Jj, 0, 0)) is an integrable Hamiltonian.

It is worth noting that the one degree of freedom Hamiltonian H0, associated to the circular and planar resonant problem, is a peculiar attribute of the 1:1
mean-motion resonance.

The first property allows us to define a new canonical coordinate system which inserts the stricly positive number a and such that

J2 =
β1
√

µ1 + β2
√

µ2

2

√
a, J1 =

β1
√

µ1− β2
√

µ2

2

√
a + J, θ1 = θ. (5)

Finally, we introduce the dimensionless and non canonical action-like variable u as J ∝ u and which can be relied to the semi-major axes : au2 ∝ a1 − a2.

Thus, the integrable averaged Hamiltonian H0 can be studied and explicitely expressed in terms of the (θ, J, a), or (θ, u, a) for convenience.

The integrable part H0
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After replacing the vectors rj and r̃j by their expressions in terms of the elliptic elements into the planetary Hamiltonian (1), an explicit expression of H0 is
obtained by suppressing the terms depending on the variables xj, xj and the fast angle θ2. This leads to the Hamiltonian

H0 = −
β1µ1

2a1
− β2µ2

2a2
+ Gm1m2

 cos θ√
a1a2
− 1√

a2
1 + a2

2− 2a1a2 cos θ

 . (6)

The above figure represents the whole phase portrait of the integrable Hamiltonian H0 in coordinates (θ, u) for m1 = mJ = 10−3 and m2 = mS = 3× 10−4

and G = m0 = a = 1, where the masses mJ and mS are close to those of Jupiter and Saturn expressed in solar mass.

Firstly, you can notice that this plot is similar to the well known Hill’s diagram (or zero-velocity curves) of the non averaged planar circular RTBP (see
[Szebehely, 1967]) although the zero-velocity curves are not solution curves of the motion. It is also topologically equivalent to the phase space of the
averaged planar circular RTBP when the eccentricity of the test-particle is equal to zero (see [Nesvorný et al., 2002, Morbidelli, 2002]).

Description of the integrable part of the averaged Hamiltonian:

• Singularity : H0 possesses one singular point at u = θ = 0 which corresponds to the collision between the planets.

• Equilibria & Dynamics : This Hamiltonian possesses five fixed points that correspond to the usual Euler and Lagrangian configurations .
◦ The two stable equilibrium points located at θ = ±π/3, u = 0 represent the averaged equilateral configurations that we will denote abusively by

L4 and L5 by analogy with the RTBP. Each of these points is surrounded by tadpole orbits corresponding to periodic deformations of the equilateral
triangle. This region is bounded by the separatrix S3 that originates at the hyperbolic fixed point L3 at θ = π, u ≈ 0, for which the three bodies are
aligned and the Sun is between the two planets and its separatrix.
◦ Outside this domain, the horseshoe orbits are enclosed by the separatrix S2 that originates at the fixed point L2 (θ = 0 and u < 0). This point, as

the equilibrium point L1, is associated with an Euler configuration for which the two planets are on the same side of the Sun.
◦ The last domain, centered at the singularity, is surrounded by the separatrix S1 connecting the L1 point (θ = 0 and u > 0) to itself. Inside this small

region, the two planets seem to be subjected to a satellite-like motion.

In addition to this, for equal planetary masses, with respect to the axis u = 0 the phase portrait becomes symmetric . It turns out that the equilibrium

points L3, L4, L5 lie on the axis of symmetry, and that the two curves S1 and S2 merge together giving rise to a unique separatrix connecting L1 to L2.

Infinitesimal neighborhood of H0

In order to study the linear stability of the invariant manifold in the eccentricities direction, we
calculate the variational equations associated to this invariant surface.

⇒ Linearization of the differential system associated to (4) in the neighborhood of {xj = 0}.
It can be derived from the quadratic expansion in eccentricity of the averaged Hamiltonian H. This
expansion can be written in the form H0 + H(h)

2 with

H(h)
2 = Gm1m2

(
AhX1X1 + BhX1X2 + BhX1X2 + AhX2X2

)
(7)

where Ah and Bh are (θ(t), u(t))-dependent coefficients.

The variational equations in the vicinity of a solution lying in the plane {xj = 0} and satisfying

θ̇ =
1
c

∂H0

∂u
(θ, u), u̇ = −1

c
∂H0

∂θ
(θ, u) (c as dimensionnal constant) take the form (8)

(
Ẋ1

Ẋ2

)
= Mh(θ, u)

(
X1

X2

)
with Mh(θ, u) = 2iGm1m2

(
Λ−1

1 Ah Λ−1
1 Bh

Λ−1
2 Bh Λ−1

2 Ah

)
(9)

As these solutions are periodic (except if their initial conditions are chosen on separatrices) the linear
equation (9) is periodically time-dependent. As a consequence, their solutions cannot generally be
expressed in a closed form.

⇒ A notable exception occurs at the equilibrium points of the system (8) where the variational
equations become autonomous and consequently integrable.

Thus, we study the (linear) neighborhood along eccentricity direction of the circular Lagrangian

equilibria L4 and L5.

The emergence of anti-Lagrange orbits
For the equilateral configurations (θ = ±π/3), neglecting the quadratic terms in ε, the matrix Mh

takes the following expression

Mh = −i
27
8

n0

m0

(
m2 −m2eiθ

−m1e−iθ m1

)
where n0 plays the role of an averaged mean motion

(10)
Matrix study: This matrix possesses two eigendirections associated to the eigenvectors

V1 =

(
eiθm2

−m1

)
and V2 =

(
eiθ

1

)
whose eigenvalues are respectively

{
v1 = −i27

8
m1+m2

m0
n0

v2 = 0
(11)

Physical interpretation:

• V2 direction: Along the neutral direction, the one which is collinear with V2, the two eccentricities
are the same and the angle ∆v = v1− v2 separating the two apsidal lines is equal to π/3 at L4

and −π/3 at L5. These configurations clearly correspond to the Lagrangian elliptic equilibria,
which are fixed points of the averaged problem, and consequently of the linearized averaged
problem at L4 or L5. This is the reason why the associated eigenvalue v2 vanishes.

• V1 direction: Along the direction V1, the orbits satisfy the relations

a1 = a2 = a, θ = ±π/3, m1e1 = m2e2, and ∆v = v1−v2 = θ + π.
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Scheme of the dynamics along the eccentricities direction on the fixed point L4 at the infinitesimal
state. The elliptic Lagrangian equilateral configurations and the Anti-Lagrange orbits bifurcate at

the same fixed point L4.

Conclusion
We developed an analytical Hamiltonian formalism adapted to the study of two planets in a

co-planar motion and co-orbital resonance. The Hamiltonian, averaged over one of the plane-

tary mean longitude, is expanded in power series of eccentricities. The model, which is valid

in the entire co-orbital region, possesses an integrable approximation modeling the planar and

quasi-circular motions. Focusing on the two Lagrangian fixed points of this approximation, we

highlighted relations linking the eigenvectors of the associated linearized differential system

and the existence of remarkable orbits like the elliptic Lagrangian configurations and the anti-

Lagrange orbits ([Giuppone et al., 2010]). The bottom figure summerizes what we found with the

help of the construction of a Birkhoff normal form: the circular Lagrangian equilibria (L4 and L5)

bifurcates along eccentricities direction to the elliptic Lagrangian equilateral configurations and

the anti-Lagrange orbits.

This corresponds to an infinitesimal version of the anti-Lagrange orbits found numerically by
[Giuppone et al., 2010]. On these trajectories the elliptic elements a1, a2, e1, e2 and θ are constant.
Only the two angles v1 and v2 precess with the same frequency equal to g1 = iv1 = 27

8
m1+m2

m0
n0,

in such a way that the angle ∆v is constant.

Of course, this family provides only an infinitesimal approximation of the anti-Lagrange family in

the neighborhood of L4 and L5.

Generalization at any degree of H
In this section, we describe how we proceeded in our paper [Robutel and Pousse, 2013] to generalize
the infinitesimal approximation of the anti-Lagrange orbits discovered previously in a family of
quasi-periodic orbits at any degree of the averaged Hamiltonian H. The main idea was to use of the
Birkhoff normal form transformation. In few words, we

• reduced the quadratic form to an Hamiltonian of a triple harmonic oscillators system and de-
fined three families associated to each of them:

– F0, the family that corresponds to the quasi-circular motions (e1 = e2 = 0),
– F l

1, the one corresponding to the linear approximation of the anti-Lagrange orbits,
– F2, the last one which contains the Lagrangian elliptic configurations.

• Considering the terms of degree greater than two in the expansion of the averaged Hamiltonian,
we noticed that the D’Alembert rule holds, implying that the manifold {xj = 0} is still invariant
to the flow of this Hamiltonian. Hence, F0 and F2 are invariant of the full averaged Hamiltonian
also.

• Then, we constructed a coordinate system for which the anti-Lagrange family possesses the
same kind of parametrization than the two other families (just depending on one element which
characterizes the entire family). This coordinate system can be chosen among one of those that
reduce the full averaged Hamiltonian to its Birkhoff normal form.

In the validity domain of the Birkhoff normal form, we established rigorously the existence of

the family F1 which satisfies the relation m1e1 = m2e2 at its beginning. We found analytically the

anti-Lagrange orbits which were deduced by numerical simulations in [Giuppone et al., 2010].

Thus, the elliptic Lagrangian configurations and the anti-Lagrange orbits bifurcate along eccen-

tricities direction from the same fixed point: the circular Lagrangian equilibria L4 and L5.
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