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1 Introduction

The proliferation of space debris orbiting Earth has
stimulated the investigations on their dynamical en-
vironments and, especially, on the e↵ect of the small
disturbing forces that act on their long-term dynamics
(see, e.g., [1], [2]). Among them, the third-body per-
turbation of the Sun and the Moon generate complex
resonant structures that provide non trivial behaviors
and chaotic motion (see, e.g.,[3]). As a matter of fact,
these resonances, together with the ones associated
with the solar radiation pressure, organize the distri-
bution of space debris for high-altitude orbits in the
long term in the same way as mean-motion resonances
create instabilities in the Solar system. It is enough
to mention the so-called Kirkwood gaps of the Aster-
oid Belt, located exactly at mean-motion resonances
of low order with Jupiter (see, e.g, [4]). In-depth in-
vestigations of resonances represent an e↵ective mean
to mitigate the space debris problem (see, e.g., [5]).
Their understanding may provide natural mechanisms
that allow to control the long-term dynamics of satel-
lites and, therefore, manage the space tra�c. In this
framework, we will discuss about the dynamics of a
test-particle in the 2g + h resonance, where g is the
argument of perigee and h the longitude of the as-
cending node of its orbit.

The first part of the talk, sketched in Sect. 2, will be
dedicated to formulate the problem and present a per-
turbative scheme that leads to an integrable Hamil-
tonian which gives a complete understanding of the
resonant dynamics. Then, recalling that the Galileo
constellation orbits the Earth in a small neighborhood
of the 2g + h resonance, we will discuss about the
topology of the phase space in the case of a Galileo
navigation satellite (see Sect. 3). Finally, going back
to the full problem, we will outline our strategy step
by step in order to obtain a rigorous proof of Arnold
di↵usion in the considered problem (see Sect. 4). As
proposed by Daquin et al.[6], this mechanism of dif-
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fusion may provide a practical application in order to
manage the end-of-life of the Galileo constellation by
pumping-up the eccentricity of the orbit and slowly
guiding the satellites to a reentry in the Earth’s at-
mosphere.

2 Modeling the problem

We consider the dynamics of a test particle whose Ke-
pler motion around Earth is disturbed by the secular
and quadrupolar approximations of the geopotential
(usually known as the J2 e↵ect) and of the third-body
perturbation due to the Moon. The Delaunay action-
angle variables are introduced in order to preserve the
symplectic geometry of the problem:

L =
p
µa, G = L

p
1� e2, H = G cos I,

l = M, g = !, h = ⌦,

where µ is the mass parameter of the Earth and
(a, e, I,⌦,!,M) denote respectively the semi-major
axis, the eccentricity, the inclination with respect to
the equatorial plane, the longitude of the node, the
argument of the perigee, and the mean anomaly of
the particle.

The problem is approached through the perturba-
tion theory. For that purpose, we define the small pa-
rameter ↵ = a/aM which characterizes the distance
of the Moon (aM denotes the semi-major axis of the
Moon) with respect to the orbit of the satellite. In
that framework, the Hamiltonian of the problem can
be written

HK(L) + H0(L,G,H) + ↵
3HIM

1 (L,G,H, g, h, t).

where HK is the unperturbed Kepler motion of the
particle, while H0 and HIM

1 model respectively the
variations generated by the Earth’s J2 e↵ect and by
the Moon. For the sake of conciseness, the readers
are referred to the paper [7] for the detailed expres-
sions of each term. We only point out that the Moon’s
disturbing e↵ect depends on time since its orbit is in-
clined with respect to the ecliptic (IM ' 5˚), and
experiences a linear drift in the longitude of the node,
with a period of about 18.6 years.
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2.1 The “2g + h” resonance

Our work focuses on a peculiar region of the phase
space for which the solutions are characterized by
a resonant angle x = 2g + h that oscillates around a
given value. At first order, the unperturbed Hamil-
tonian (↵ = 0), which is integrable, reveals the loca-
tion of the resonance in the phase space, that is for
all G 6= 0 and H = G cos I? with a critical inclina-
tion I? ' 56.06˚ in the prograde case1. Besides, in
a small enough neighborhood of I?, the angular vari-
ables evolve at di↵erent rates, g and h being “fast”
angles with respect to x which undergoes a “slow”
drift in O(|I � I?|). In the full problem (↵ > 0),
the phase space is no more integrable, however the
timescales separation still remains as long as |I � I?|
and ↵ are small enough. A classical way to take ad-
vantage of this feature consists in introducing a suit-
able set of action-angle variables. We propose the
symplectic transformation

⌥ : (l, L, x, y, h,�, t) 7! (l, L, g,G, h,H, t)

such as

y =

p
µa

2

p
1� e2, � =

p
µa

2

p
1� e2 (2 cos I � 1) ,

in order to deal with a resonant action y that only
depends on the variations of the eccentricity. Hence,
the variations of the inclination are deduced from �.

2.2 A suitable perturbative treatment

The Hamiltonian of the full problem is time-
dependent due to motion of the Moon’s node with
respect to the ecliptic. In order to overcome this dif-
ficulty, a first reduction is performed by considering
the orbit of the Moon in the ecliptic plane, that is, for
IM = 0, which makes the longitude of the ascending
node not defined. In that framework, the full problem
becomes the perturbation of an autonomous Hamilto-
nian by a remainder in O(↵3

IM).
The autonomous Hamiltonian has 3 degrees of free-

dom, with a conserved quantity L. Another reduc-
tion is possible by exploiting the timescales separation
and replacing the original Hamiltonian by another
one in which the fast oscillations have been removed.
In other words, we perform an averaging of the au-
tonomous Hamiltonian over the the fast angle h. Ac-
cording to the perturbation theory, the autonomous
Hamiltonian is mapped to the averaged one added to
a remainder in O(↵6).

As a consequence, the two steps of reduction pro-
vide an averaged Hamiltonian

HK +H0 �⌥+ ↵
3

Z 2⇡

0
H0

1 �⌥dh,

1The retrograde case located in I? ' 110.99˚ will not be
considered during the talk.
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Figure 1: Location of the three families of fixed points, de-
noted “e = 0”, “x = 0” and “x = 180˚” in the dimensionless
action space (�/L, y/L). Blue and red curves correspond re-
spectively to segment of centers and saddles. Green, purple
and yellow areas are associated with 3 di↵erent topologies of
phase portraits.

that only depends on (L, x, y,�) and for which L and
� are first integrals. Considering L and � as param-
eters, the description of the phase portrait obtained
for various values of � allows to understand the global
dynamics of the 2g + h resonance.

3 The resonant dynamics of a Galileo satellite

From now on, we consider a Galileo satellite that or-
bits Earth at a = 29600 km, that is, for a small pa-
rameter ↵ = 0.077. The explicit expressions of H0

and H0
1 given in [7] combined with our perturbative

scheme provide a family of integrable Hamiltonian,
parametrized by �, that can be written as follow:

H�(x, y) = y
�5(A+ ↵

3
p
BC cosx)

where A, B and C are polynomial functions in (�, y).
For each value of �, the derived equations of motion

allow to compute fixed points that necessarily satisfy
one of the following conditions:

e = 0, e > 0 with x = 0, e > 0 with x = 180˚.

For each condition, a one-parameter family of fixed
points is highlighted while the Hessian matrix of the
Hamiltonian provides the evolution of its stability. We
point out that the resonant variables (x, y), derived
from the Delaunay coordinates, have an important
failing, that prevents from computing the stability of
the fixed points associated with the circular orbit.
This di�culty is overcome with the introduction of
canonical polar coordinates

(⇠, ⌘) =
p

2L� 4y (cos(x/2), sin(x/2))
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Figure 2: Phase portrait of the averaged Hamiltonian for
a Galileo satellite (↵ = 0.077) with �/L = cos I � 1/2 and
I = 56˚.

that are equivalent to (e cos(x/2), e sin(x/2)) for
quasi-circular orbits.

Figure 1 depicts the location and stability of the
three families of fixed points in the dimensionless ac-
tion space (�/L, y/L). The families “x = 0” and
“x = 180˚” extend from either side of the critical
inclination. By varying �, “x = 0” remains a center,
while “x = 180˚” and “e = 0” bifurcate. Hence, by
varying �, three topologies of phase portraits can be
identified: a saddle and a center, respectively in e = 0
and x = 0 in the green region, two saddles and two
centers, respectively in e = 0, x = 180˚ and x = 0,
x = 180˚ in the purple region, and a saddle and two
centers, respectively in x = 180˚, e = 0 and x = 0
in the yellow region. As a consequence, as depicted
in the phase portrait of Fig. 2, for a Galileo satel-
lite in circular orbit with I = 56˚ (green region), a
small departure in eccentricity will necessarily lead to
a slow increasing of the eccentricity that can reach
high values, comparable to the one associated with
the collision orbit with the Earth’s surface (e ' 0.78).
Two dynamics are possible: a resonant motion inside
the separatrix with x and e that oscillate respectively
around 0˚ and e ' 0.55 with large amplitudes, and a
non-resonant motion with x that circulates.

4 A strategy to prove Arnold di↵usion

Our aim is to obtain a rigorous proof of existence of a
drift in actions, that may increase the eccentricity of
a Galileo satellite in the full problem. A normally hy-
perbolic invariant manifold (NHIM), that has stable
and unstable invariant manifolds will be a key tool to
construct the drifting orbits.

The ideal case given by our integrable approxima-
tion of the problem provides a global understanding

of the “2g + h” resonance. More precisely, for a fixed
value of energy, the dynamics is foliated by two dimen-
sional invariant tori with constant � (either resonant
or non-resonant depending on the value of �). For
each value of � belonging to a given non empty range
[��,�+], the averaged Hamiltonian has a saddle in
⇠ = ⌘ = 0, and the union of these saddles forms a
NHIM.

Going back to the non-averaged problem defined by
the Hamiltonian with IM = 0, � is not integrable any
more but the energy is still preserved. In physical
terms, the eccentricity cannot increase significantly.
In that framework, we will show that each saddle be-
comes now a hyperbolic periodic orbit implying that
the considered NHIM is foliated by invariant two di-
mensional tori.

In the full problem given by IM > 0, the time de-
pendence due to the motion of the Moon’s node is
added and the energy is not a first integral anymore.
The dynamics in the NHIM will be more complicated,
but expected to be IM-close to integrable (we recall
that IM ' 5˚). In such a case, the homoclinic struc-
tures constructed in the previous steps will be used in
order to obtain Arnold di↵usion orbits. Through this
strategy, we will build orbits that travel along the in-
variant manifolds and undergo an increase of energy
corresponding to a drift in eccentricity.
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